Back in the old days of Apache Spark, using Python with Spark was an exercise in patience. Data was moving up and down from Python to Scala, being serialised constantly. Leveraging SparkSQL and avoiding UDFs made things better, likewise did the constant improvement of the optimisers (Catalyst and Tungsten). But, after Spark 2.3, PySpark has sped up tremendously thanks to the addition of the Arrow serialisers. In this talk you will learn how the Spark Scala core communicates with the Python processes, how data is exchanged across both sub-systems and the development efforts present and underway to make it as fast as possible. About: Databricks provides a unified data analytics platform, powered by Apache Spark™, that accelerates innovation by unifying data science, engineering and business. Read more here: Connect with us: Website: Facebook: Twitter: LinkedIn: Instagram: Databricks is proud to announce that Gartner has named us a Leader in both the 2021 Magic Quadrant for Cloud Database Management Systems and the 2021 Magic Quadrant for Data Science and Machine Learning Platforms. Download the reports here.









